TY - CONF A1 - Üstündag, Ömer A1 - Bakir, Nasim A1 - Gook, S. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Hybrid laser-arc welding of laser and plasma-cut 20 mm thick structural steels N2 - It is already known that the laser beam welding (LBW) or hybrid laser-arc welding (HLAW) processes are sensitive to manufacturing tolerances such as gaps and misalignment of the edges, especially at welding of thick-walled steels due to its narrow beam diameter. Therefore, the joining parts preferably have to be milled. The study deals with the influence of the edge quality, the gap and the misalignment of edges on the weld seam quality of hybrid laser-arc welded 20 mm thick structural steel plates which were prepared by laser and plasma-cutting. Single-pass welds were conducted in butt-joint configuration. An AC magnet was used as a contactless backing. It was positioned under the workpiece during the welding process to prevent sagging. The profile of the edges and the gap between the workpieces were measured before welding by a profile scanner or a digital camera, respectively. With a laser beam power of just 13.7 kW, the single-pass welds could be performed. A gap bridgeability up to 1 mm at laser-cut and 2 mm at plasma-cut samples could be reached respectively. Furthermore, a misalignment of the edges up to 2 mm could be welded in a single-pass. The new findings may eliminate the need for cost and time-consuming preparation of the edges. T2 - 74th IIW Annual Assembly and International Conference 2021 CY - Online meeting DA - 07.07.2021 KW - Hybrid laser-arc welding KW - Thick-walled steel KW - Edge quality KW - Gap bridgeability KW - Misalignment of the edges KW - Plasma-cutting KW - Laser-cutting PY - 2021 AN - OPUS4-53577 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -