TY - JOUR A1 - Mishurova, Tatiana A1 - Cabeza, Sandra A1 - Artzt, Katia A1 - Haubrich, J. A1 - Klaus, M. A1 - Genzel, Ch. A1 - Requena, G. A1 - Bruno, Giovanni T1 - An Assessment of Subsurface Residual Stress Analysis in SLM Ti-6Al-4V T2 - Materials N2 - Ti-6Al-4V bridges were additively fabricated by selective laser melting (SLM) under different scanning speed conditions, to compare the effect of process energy density on the residual stress state. Subsurface lattice strain characterization was conducted by means of synchrotron diffraction in energy dispersive mode. High tensile strain gradients were found at the frontal surface for samples in an as-built condition. The geometry of the samples promotes increasing strains towards the pillar of the bridges. We observed that the higher the laser energy density during fabrication, the lower the lattice strains. A relief of lattice strains takes place after heat treatment. KW - Selective laser melting KW - Additive manufacturing KW - Heat treatment KW - Ti-6Al-4V KW - Synchrotron X-ray diffraction KW - Residual stress PY - 2017 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/39575 AN - OPUS4-39575 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-395759 SN - 1996-1944 VL - 10 IS - 4 SP - Article 348, 1 EP - 14 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany