TY - GEN A1 - Kauss, N. A1 - Rosemann, Paul A1 - Halle, T. T1 - Age-hardening behaviour, microstructure and corrosion resistance of the copper alloyed stainless steel 1.4542 N2 - The copper alloyed stainless steel 1.4542 (X5CrNiCuNb16-4) is used in different areas due to its good mechanical properties and corrosion resistance. Strength and corrosion re-sistance can be adjusted by the heat treatment, which is of importance for the application of this alloy. The mechanical properties (strength and hardness) are attributed to the dispersive precipitation of the copper rich ε–Phase. The additional precipitation of chromium carbides can reduce the corrosion resistance. Different ageing states were produced to investigate the precipitation behaviour with various methods. Furthermore, the influence of cold-rolling on the precipitation behaviour was studied in comparison to a solution annealed state without deformation. The microstructure was studied by SEM and the variations of hardness and magnetic proportion were characterised. The electrochemical potentiodynamic reactivation (EPR) was used to determine the corrosion resistance and detect chromium depletion in all heat-treated states. The results show that a work hardening accelerates the precipitation rate, while ageing at 600 °C reduces the corrosion re-sistance due to chromium depletion. T2 - EUROCORR 2018 CY - Krakow, Poland DA - 09.09.2018 KW - Corrosion KW - Stainless steel KW - Corrosion resistance KW - EPR KW - Corrosion testing KW - Heat treatment KW - ThermoCalc KW - REM KW - Martensitic stainless steels PY - 2018 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/45955 AN - OPUS4-45955 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany