TY - CONF A1 - Meurer, Maren A1 - Wiesner, Yosri A1 - Geburtig, Anja A1 - Waniek, Tassilo A1 - Altmann, Korinna T1 - Is olypropylene relevant for microplastic analytics? N2 - Nowadays, in every terrestrial and aquatic ecosystem, even in the remotest areas, small residues of plastics, the so called microplastic (MP) can be found. MPs are particles with a size of 1-1000 µm (ISO/TR 21960:2020), mainly containing synthetic polymers like polyethylene (PE), polypropylene (PP), polystyrene (PS) or polyethylene terephthalate (PET). Even styrene-butadiene rubber (SBR) as an indication for tire wear is included due to similar particle formation. To understand the MPs consequences to the environment, it is of high priority to capture its extent of contamination. It is surprising that in the analysis of polymer masses in environmental samples, PE, PS and SBR are often detected, but only small amounts of PP, although this is the second most commonly produced standard plastic and many MP particles originate from carelessly disposed packaging materials. This presentation provides hypotheses about the reasons of rare PP identification and mass quantification in environmental samples. Different investigations of pristine PP and representative environmental samples, including the pre-treatment by Accelerated Solvent Extraction (ASE) or with density separation followed by the thermal extraction / desorption gas chromatography-mass spectrometry (TED-GC/MS) are presented. The results are discussed according to the material properties and a possible degradation mechanism under different weathering conditions which indicate less stability under relevant storage conditions. T2 - Society of Environmental Toxicology and Chemistry CY - Dublin, Ireland DA - 30.04.2023 KW - Sample preparation KW - Polypropylene KW - Microplastic KW - Degradation PY - 2023 AN - OPUS4-57474 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -