TY - GEN A1 - Habibimarkani, Heydar T1 - Complementary Characterization of FeNi-Oxide Nanoparticles as Catalysts for Water Electrolysis combining Electron Microscopy, EDS, XRD, ToF-SIMS and Electrochemical Analysis N2 - Electrocatalysis is and will continue to play a central role in the development of a new and modern sustainable economy, especially for chemicals and fuels. The storage of excess electrical energy into chemical energy by splitting water into hydrogen and oxygen is a feasible solution in this economic sector. A major drawback of electrical energy lies in the storage. Therefore, hydrogen is discussed as promising alternative. Fortunately, this issue can be effectively addressed through the implementation of chemical storage mechanisms. Due to their abundance on Earth and inherent stability in alkaline solutions, transition-metal oxides have become one of several viable alternatives to conventional noble-metal catalysts. Since FeNi oxide is one of the most active oxygen evolution reaction (OER) electrocatalysts for alkaline water electrolysis, it has been the subject of extensive research. A series of different types of FeNi oxide nanoparticles (NPs) with atomic ratios covering a broad range, and various sizes with specific stoichiometric and non-stoichiometric iron and nickel ratios was synthesized and characterized by the combination of surface analysis techniques, such as time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). The morphology was studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which revealed the coexistence of mixed and unmixed iron and nickel NPs with comparable sizes in the range of 30–40 nm across all ratios. The synthesis technique displayed control over the iron-nickel ratio, as evidenced by energy dispersive X-ray spectroscopy (EDS) data. The presence of magnetite (Fe3O4) was detected in all samples investigated by X-ray diffraction (XRD). Furthermore, the existence of nickel ferrite (NiFe2O4) was shown in the Fe2Ni by XRD analysis. For the cyclic voltammetry (CV) measurements, the NPs were deposited onto glassy carbon electrodes using Nafion® as an ionomer, and 1 M KOH was employed as the electrolyte. Subsequently, the NPs/Nafion® electrode was transferred into the ToF-SIMS chamber to allow surface analysis and depth profiling. The ToF-SIMS analysis revealed distinct peaks corresponding to Fe, Ni, and other peaks associated with Nafion®, whereas a straightforward correlation between the Ni.Fe ratio and the SIMS peak pattern is not possible. The catalytic activity towards OER was evaluated through CV measurements, where the Fe2Ni3 ratio exhibited the most favorable performance, displaying a lower overpotential. T2 - SIMS Europe 2023 CY - Nottingham, England DA - 02.09.2023 KW - FeNi-Oxide NPs KW - ToF-SIMS KW - Catalysts KW - OER PY - 2023 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/59143 AN - OPUS4-59143 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany