TY - CONF A1 - Schoenhals, Andreas T1 - Structure property relationships of thin polymer films N2 - Polymers at interfaces play a major role in a broad variety of applications ranging from engineering purposes (for instance polymer based nanocomposites) to high tech implications (for instance light emitting diodes). Here, thin films with thicknesses down to few nanometers are prepared on different substrates as model systems for polymer composites. The thin films are investigated by a combination of surface analytical and volume sensitive methods. As surface analytical methods atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and contact angle measurements (CAM) are employed. As volume sensitive broadband dielectric spectroscopy (BDS), specific heat spectroscopy (SHS), and ellipsometry are used. Especially attention is paid to understand the glass transition behavior of thin films because the glass transition is the key phenomenon determines the application of polymers also in thin films. To understand the glass transition behavior of thin films, which is controversially discussed in literature, a three layer model is discussed. Firstly, a mobile surface layer is assumed at polymer air interface of the film due to missing of segment/segment interactions. Secondly, in the middle of the film a bulk-like layer should be expected. Thirdly, for polymers having non-repulsive interactions with the substrate an irreversibly adsorbed layer is expected to be formed. Due the adsorption the molecular mobility of the segments in this layer is slowed down. What is measured for the glass transition of thin films is a complicated average of all of these effects. The different layers are hardly to address separately. Therefore, in the presentation especially model systems are selected and investigated to verify the layer model. T2 - Seminarvortrag Universität Dortmund CY - Dortmund, Germany DA - 29.01.2019 KW - Thin polymer films PY - 2019 AN - OPUS4-47289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -