TY - JOUR A1 - Frunza, L. A1 - Zgura, I A1 - Ganea, C. P. A1 - Schönhals, Andreas T1 - Molecular dynamics of alkyl benzoate liquid crystals in the bulk state and in the surface layer of their composites with oxide nanopowders JF - Journal of Molecular Liquids N2 - This paper presents the results concerning monotropic nematic liquid crystals 4-pentylphenyl 40-alkyl benzoate (5PnB) (n = 3 or 5 carbon atoms in the alkyl chain). Their mesophase properties were supported by images of the polarized optical microscopy. Molecular dynamics in the bulk samples or in the composites prepared with aerosil A380 was investigated by broadband dielectric spectroscopy in a large temperature range, appropriately chosen. Thermo gravimetric and infrared investigations were additionally performed. The data were compared with those of structurally related nematics like cyanophenyl pentyl benzoates, which have a cyan group instead of the pentyl chain. The dielectric spectra of the bulk 3P5B and 5P5B demonstrate a dielectric behavior with several relaxation processes as expected for nematic liquid crystals. The temperature dependence of the relaxation rates (and of the dielectric strength) seems to have two distinguished regimes. Thus, in the isotropic state, at higher temperatures the data obey the Vogel–Fulcher–Tammann law, whereas an Arrhenius law is fitted at lower temperature, in a close similarity to the behavior of a constrained dynamic glass transition. Samples with a high density of silica (larger than 7 g aerosil/1 g of 5PnB) were prepared to observe a thin layer adsorbed on the particle surface; it was estimated that almost each guest 5PnB molecule interacts with the aerosil surface. For the composites only one main relaxation process is observed at frequencies much lower than those for the corresponding bulk, which was assigned to the dynamics of the molecules in the surface layer. Infrared spectroscopy shows that these molecules interact with the surface by the ester carbonyl group leading to the monolayer self-assembly at liquid–solid interface. We note once more the importance of the functional unit(s) for the interaction with the hydroxyl groups on the aerosil surface. KW - Liquid crystals PY - 2022 DO - https://doi.org/10.1016/j.molliq.2022.119374 SN - 0167-7322 VL - 359 SP - 1 EP - 11 PB - Elsevier B.V. AN - OPUS4-54867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -