TY - JOUR A1 - Mady, A. H. A1 - Baynosa, M. L. A1 - Tuma, Dirk A1 - Shim, J.-J. T1 - Heterogeneous activation of peroxymonosulfate by a novel magnetic 3D gamma- MnO2@ZnFe2O4/rGO nanohybrid as a robust catalyst for phenol degradation T2 - Applied Catalysis B: Environmental N2 - Three-dimensional (3D) γ-MnO2@ZnFe2O4/reduced graphene oxide (rGO) nanohybrids were synthesized using a one-pot hydrothermal self-assembly method. The morphology and properties of the nanohybrids were investigated. The synergistic interactions among γ-MnO2, ZnFe2O4, and rGO resulted in 3D nanoflakes distributed uniformly in the rGO structure with a thickness of approximately 2–5 nm, leading to a high surface area. The nanohybrid containing 10 wt. % rGO exhibited superior catalytic activities for phenol degradation through the activation of peroxymonosulfate (PMS) to generate active sulfate radicals (SO4 •–). Typically, 50 mL of a 20 ppm phenol solution was degraded completely and 85% of the carbon content had been mineralized in 30 min at 25 °C using 10 mg of the nanohybrid. The nanohybrid could be recovered easily using a magnet and reused, maintaining high stability during catalytic oxidation. The 3D γ-MnO2@ZnFe2O4/rGO nanohybrid catalyst could be applied to the removal of hard-to-degrade waste materials owing to its high efficiency and excellent reusability. PB - Elsevier BV CY - Amsterdam KW - Graphene KW - Nanohybrid KW - Degradation PY - 2019 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/47134 AN - OPUS4-47134 SN - 0926-3373 SN - 1873-3883 VL - 244 SP - 946 EP - 956 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany