TY - CONF A1 - Geburtig, Anja A1 - Wachtendorf, Volker A1 - Falkenhagen, Jana T1 - Combined impact of UV radiation and nitric acid (HNO3) on HDPE jerrycans – comparison of outdoor and lab test T2 - 24th iapri World Packaging Conference N2 - A damaging action of HNO3-55% only occurs in combination with its decomposition into nitrous gases, which can be caused by UV radiation. In a laboratory test, transparent HDPE jerrycans have been exposed to both UV radiation and 55 wt-% nitric acid solution at (41 ± 2)°C, for up to 20 days. For comparison, UV radiant exposure (21 days) and nitric acid exposure (up to 6 weeks) were performed separately, at nearly equal temperatures. The respective damages are compared with FTIR spectroscopy in ATR and HT-gel permeation chromatography (GPC) on a molecular level and with hydraulic internal pressure testing as a component test. For the used jerrycans, relevant oxidation can only be found after the combined exposure. The gradual increase in oxidative damage shows the good reproducibility of the lab exposure. The decomposition of nitric acid into nitrous gases by UV radiation – as well as the jerrycan oxidation – is also observed at lower HNO3 concentration (28 wt- %). Similar results are obtained after outdoor tests. Again, the damage occurs only after combined exposure, in contrast to the exposures to UV only and to HNO3 only, which were conducted in parallel. Outdoor exposures are most readily accepted as they represent possible end-use conditions. However, the reproducibility of these exposures is poor due to the large temporal variations in weather. There are also several safety risks, which is why the number of replicates remains limited. Since the outdoor and lab exposure tests show the same qualitative results, it is appropriate to conduct systematic studies in the laboratory. After 6 days of lab exposure, the oxidation damage is rated as critical, which corresponds to about 1/10 year in Central Europe, according to the UV radiant exposure. It should be noted that this amount can also occur in two sunny weeks. T2 - 24th iapri World Packaging Conference CY - Valencia, Spain DA - 17.06.2024 KW - Ppolyethylene KW - UV exposure KW - Nitric acid KW - Oxidation PY - 2024 VL - 2 SP - 30 EP - 37 PB - ITENE AN - OPUS4-60414 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -