TY - JOUR A1 - Iqbal, S. A1 - Mady, A. H. A1 - Kim, Y.-I. A1 - Javed, U. A1 - Shafi, P. M. A1 - Nguyen, V. Q. A1 - Hussain, I. A1 - Tuma, Dirk A1 - Shim, J.-J. T1 - Self-templated hollow nanospheres of B-site engineered non-stoichiometric perovskite for supercapacitive energy storage via anion-intercalation mechanism JF - Journal of Colloid and Interface Science N2 - The continual increase in energy demand and inconsistent supply have attracted attention towards sustainable energy storage/conversion devices, such as electrochemical capacitors with high energy densities and power densities. Perovskite oxides have received significant attention as anion-intercalation electrode materials for electrochemical capacitors. In this study, hollow nanospheres of nonstoichiometric cubic perovskite fluorides, KNi1-xCoxF3-delta (x = 0.2; delta = 0.33) (KNCF-0.2) have been synthesized using a localized Ostwald ripening. The electrochemical performance of the non-stoichiometric perovskite has been studied in an aqueous 3 M KOH electrolyte to categorically investigate the fluorine-vacancy-mediated charge storage capabilities. High capacities up to 198.55 mA h g-1 or 714.8 C g-1 (equivalent to 1435 F g-1) have been obtained through oxygen anion-intercalation mechanism (peroxide pathway, O-). The results have been validated using ICP (inductively coupled Plasma mass spectrometry) analysis and cyclic voltammetry. An asymmetric supercapacitor device has been fabricated by coupling KNCF-0.2 with activated carbon to deliver a high energy density of 40 W h kg-1 as well as excellent cycling stability of 98 % for 10,000 cycles. The special attributes of hollow-spherical, non-stoichiometric perovskite (KNCF-0.2) have exhibited immense promise for their usability as anion-intercalation type electrodes in supercapacitors. KW - Nanospheres KW - Perovskite KW - Supercapacitor PY - 2021 DO - https://doi.org/10.1016/j.jcis.2021.03.147 SN - 0021-9797 VL - 600 SP - 729 EP - 739 PB - Elsevier Inc. CY - Amsterdam AN - OPUS4-52873 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -