TY - CONF A1 - Waurischk, Tina A1 - Balzer, R. A1 - Kiefer, P. A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. A1 - Deubener, J. T1 - New device for inert crack growth measurements in ultra-strong glasses N2 - The practical strength of glasses under ambient conditions is substantially lower compared to its intrinsic strength because of sub-critical crack growth (SCCG) from microscopic flaws. While SCCG is related to the humidity of the ambient atmosphere, leading to stress corrosion phenomena, the detailed kinetics are still not fully understood. To get better insight to the contribution of water on the crack-tip, highly water bearing glasses will be investigated by a new device for inert SCCG-measurements using double cantilever beam (DCB) geometry specimens. This device was designed to investigate the stress intensity factor in modus I and crack velocity in vacuum, but different atmospheres can also be introduced. For validation of the new device, first experiments were performed on microscope slides as well as on a soda-lime silicate and a borosilicate crown glass. The results achieved will be presented in comparison to the published results of Wiederhorn. T2 - 91. Glastechnische Tagung CY - Weimar, Germany DA - 29.05.2017 KW - Double cantilever beam KW - DCB KW - Crack intensity factor KW - Crack growth velocity KW - Glass PY - 2017 AN - OPUS4-40680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -