TY - GEN A1 - Gumenyuk, Andrey T1 - Novel metrology to determine the critical strain conditions required for solidification cracking during laser welding of thin sheets N2 - The weldability of materials is still for many years a highly contentious issue, particularly regarding the causes of the hot crack formation. Because of the process-related temperature and emissions, direct measurement for the arising strain in the close vicinity of the welding process is challenged. therefore, the externally loaded hot cracking testes remain for decades the only way to determine the critical straining conditions for solidification cracking. In this study, a novel optical two-dimensional in situ observation technique has been developed to analyse the strain evaluation during the welding process in the moment of crack formation. Additionally, the Controlled Tensile Weldability test (CTW test) was used to generate the hot crack under different global straining conditions. To record the welding process and the moment of the solidification crack initiation a CMOS camera was used which inserted coaxially into the optical path of the welding laser. As illumination source a diode laser with wave length 808 nm was employed to illuminate the welding region. An interference filter was placed on the camera lens, allowing only the illumination wavelength to pass through and reflecting all other wavelengths, so that the melt pool and the re-solidifying metal could be visualized in a single image. in order to obtain good temporal resolution, the frame rate of the camera was set to 1100 frame per second in. The contrast in images obtained using this unique setup allows to apply the optical flow technique based on Lucas-Kanade (LK) algorithm to follow the pixels in each image sequence and then to calculate the displacement field. The strain was calculated based on the estimated displacement. Using this technique, the local strains and strain rates under different global straining condition has been determined and analysed. The results shown Dependency between the external strain rate and the critical local strain and strain rate has been observed. That is to say, the critical local strain and strain rate are increased with an increase of the strain rate. Moreover, the described procedure of the optical measurement allows to determine the real martial dependent values of critical strain and strain rate characterizing transition to the hot cracking during laser welding processes.The experiments as well as the measurement has been performed on the stainless steel 316L (1.4404) T2 - 9-th international Conference Beam Technology and Laser Application CY - St. Petersburg, Russia DA - 17.09.2018 KW - Laser welding KW - Novel optical metrology KW - Solidification cracking KW - Stainless steel PY - 2018 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/46287 AN - OPUS4-46287 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany