TY - CONF A1 - Kromm, Arne A1 - Rhode, Michael A1 - Schröpfer, Dirk A1 - Steger, J. A1 - Lausch, T. A1 - Kannengießer, Thomas T1 - Residual stress Formation in component related stress relief cracking Tests of a welded creep resistant steel N2 - Submerged arc welded (SAW) components of creep-resistant low-alloyed Cr-Mo-V steels are used for thick-walled heavy petrochemical reactors (wall-thickness up to 475 mm) as well as employed in construction of modern high-efficient fossil fired power plants. These large components are accompanied by significant restraints during welding fabrication, especially at positions of different thicknesses like welding of nozzles. As a result, residual stresses occur, playing a dominant role concerning so-called stress relief cracking (SRC) typically during post weld heat treatment (PWHT). Besides specific metallurgical factors (like secondary hardening due to reprecipitation), high tensile residual stresses are a considerable influence factor on SRC. For the assessment of SRC susceptibility of certain materials mostly mechanical tests are applied which are isolated from the welding process. Conclusions regarding the influence of mechanical factors are rare so far. The present research follows an approach to reproduce loads, which occur during welding of real thick-walled components scaled to laboratory conditions by using Tests designed on different measures. A large-scale slit specimen giving a high restraint in 3 dimensions by high stiffness was compared to a medium-scale multi-pass welding U-Profile specimen showing a high degree of restraint in longitudinal direction and a small-scale TIG-remelted specimen. The small-scale specimens were additionally subjected to mechanical bending to induce loads that are found during fabrication on the real-scale in heavy components. Results show for all three cases comparable high tensile residual stresses up to yield strength with high gradients in the weld metal and the heat affected zone. Those high tensile stresses can be significant for cracking during further PWHT. T2 - European Conference on Residual Stresses - ECRS10 CY - Leuven, Belgium DA - 11.09.2018 KW - Welding KW - Residual stress KW - Creep resistant steel KW - Post weld heat treatment KW - Stress relief cracking KW - 13CrMoV9-10 PY - 2018 AN - OPUS4-45983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -