TY - JOUR A1 - Kazlagic, Anera A1 - Vogl, Jochen A1 - Gluth, Gregor A1 - Stephan, D. T1 - Provenancing of cement using elemental analyses and isotope techniques – The state-of-the-art and future perspectives JF - Journal of analytical atomic spectrometry N2 - With the aim of identifying the origin and the manufacturer of a cement, a reliable procedure that provides unambiguous results is needed. Such procedure could resolve practical issues in damage research, liability issues and forensic investigations. A substantial number of attempts for fingerprinting of building materials, including cement, has already been carried out during the last decades. Most of them were based on concentration analysis of the main elements/components. This review provides an overview of provenance studies of cement and the main approaches commonly used. Provenance studies of cement via isotope techniques are also presented and discussed as representatives of the state-of-the-art in the field. Due to the characteristic properties and the occurrence of carefully selected isotope ratios, unique fingerprints of different kinds of materials can be provided by these methods. This property has largely been explored in various scientific fields such as geo- and cosmochemistry, food forensics, archaeology, geochronology, biomedical studies, and climate change processes. However, the potential of isotope techniques in cement and concrete research for provenance studies has barely been investigated. Therefore, the review outlines a suitable approach using isotope ratios, which could lead to reliable provenancing of cementitious materials in the future. KW - Cement KW - Sr isotopes KW - Provenance PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-533762 DO - https://doi.org/10.1039/d1ja00144b VL - 36 IS - 10 SP - 2030 EP - 2042 PB - The Royal Society of Chemistry CY - Cambridge, UK AN - OPUS4-53376 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -