TY - CONF A1 - Kirner, Sabrina V. A1 - Hermens, U. A1 - Winands, K. A1 - Mescheder, H. A1 - Florian, C. A1 - Solis, J. A1 - Siegel, J. A1 - Hischen, F. A1 - Baumgartner, W. A1 - Skoulas, E. A1 - Mimidis, A. A1 - Stratakis, E. A1 - Spaltmann, Dirk A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Bioinspired morphologies generated on steel surfaces by ultrashort laser pulse irradiation mimicking the fluid transport of bark bugs N2 - Nature provides countless examples of surface structures featuring extraordinary properties such as directional fluid transport. In order to mimic the morphology and outstanding wetting behaviour of bark bugs, ultrashort laser pulses with durations in the fs- to ps-range were employed for large area surface processing of steel. By scanning the laser beam across the surface of initially polished flat sample surfaces and systematically varying the laser processing parameters (peak fluence, scan velocity, line overlap), different regimes associated with characteristic surface morphologies (laser-induced periodic surface structures (LIPSS), grooves, spikes, etc.) could be identified. Additionally, different laser processing strategies were applied, varying laser wavelength, pulse duration and repetition rates, which allowed to achieve a range of morphologies that resemble different structures found on bark bugs. For identifying the ideal combination of parameters for mimicking such bug-like structures, the surfaces were inspected by means of optical and scanning electron microscopy. Complementary to the morphology study, the wetting behaviour of the surface structures for water and oil was examined intensively in terms of fluid transport and philic/-phobic nature. Additionally, with these results in hand, tribological tests investigating the wear resistance of the laser-induced nano- and microstructures were carried out. Our results demonstrate that the functionality of surface structures found in nature could be transferred to technologically relevant materials, such as steel, providing a huge potential for industrial applications for instance in friction and wear reduction. T2 - E-MRS Spring Meeting 2017, Symposium K: Bioinspired and biointegrated materials as new frontiers nanomaterials VII CY - Strasbourg, France DA - 22.05.2017 KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures (LIPSS) KW - Biomimetics KW - Fluid transport KW - Steel PY - 2017 AN - OPUS4-42331 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -