TY - JOUR A1 - Nolze, Gert A1 - Hielscher, R. A1 - Winkelmann, Aimo T1 - Electron backscatter diffraction beyond the mainstream JF - Crystal Research and Technology N2 - We present special applications of electron backscatter diffraction (EBSD) which aim to overcome some of the limitations of this technique as it is currently applied in the scanning electron microscope. We stress that the raw EBSD signal carries additional information which is useful beyond the conventional orientation determination. The background signal underlying the backscattered Kikuchi diffraction (BKD) patterns reflects the chemical composition and surface topography but also contains channeling-in information which is used for qualitative real-time orientation imaging using various backscattered electron signals. A significantly improved orientation precision can be achieved when dynamically simulated pattern are matched to the experimental BKD patterns. The breaking of Friedel’s rule makes it possible to obtain orientation mappings with respect to the point-group symmetries. Finally, we discuss the determination of lattice parameters from individual BKD patterns. Subgrain structure in a single quartz grain. The increased noise level in the left map reflects the lower precision of a standard orientation determination using band detection by the Hough transform. The right map results from the same experimental raw data after orientation refinement using a pattern matching approach. The colors correspond an adapted inverse pole figure color key with a maximum angular deviation of about 2° from the mean orientation. KW - Electron backscatter diffraction PY - 2017 DO - https://doi.org/10.1002/crat.201600252 SN - Online 1521-4079 VL - 52 IS - 1 SP - Special Issue - Article Number: UNSP 1600252, 1 EP - 24 PB - WILEY-VCH AN - OPUS4-37935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -