TY - JOUR A1 - Haas, S. A1 - Manzoni, Anna Maria A1 - Holzinger, M. A1 - Glatzel, U. T1 - Influence of high melting elements on microstructure, tensile strength and creep resistance of the compositionally complex alloy Al10Co25Cr8Fe15Ni36Ti6 JF - Materials chemistry and physics N2 - Due to its matrix/γ′ structure, the compositionally complex alloy (CCA) Al10Co25Cr8Fe15Ni36Ti6 has excellent properties that fulfill the requirements for a high-temperature material. This base alloy is alloyed with small amounts of high melting elements to a further improvement of its properties, which results in different shapes, fractions and sizes of the two phases γ′ and Heusler after various homogenization and annealing steps. By correlating this microstructure with time independent and dependent mechanical properties, conclusions can be drawn about the effects of the individual phases. The needle-shaped Heusler-phase leads to bad mechanical behavior if its phase fraction is too high. A fraction below 3 vol% is not critical in tensile tests, but it reduces the creep resistance compared to a purely two-phase matrix/γ′-alloy. Sharp-edged cubic γ′-particles and a coarse Heusler-phase without sharp edges in case of the base alloy with 0.5 at.% hafnium lead to the best tensile and creep properties in the high temperature range. At 750 °C, the Hf-containing alloy clearly outperforms two commercially used alloys in the targeted area of application when it comes to creep resistance. KW - High entropy alloy KW - Creep KW - Microstructure PY - 2021 DO - https://doi.org/10.1016/j.matchemphys.2021.125163 SN - 0254-0584 VL - 274 SP - 1 EP - 10 PB - Elsevier CY - Amsterdam AN - OPUS4-53175 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -