TY - CONF A1 - Meng, Xiangmeng A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Numerical study of additional element transport in wire feed laser beam welding N2 - The distribution of the alloying elements from the filler wire in laser beam welding plays an important role on the property of the final weld. In this study, the transport phenomena in the wire feed laser beam welding are investigated numerically. A three-dimensional transient heat transfer and fluid flow model coupled with free surface tracing and element transport is developed. A ray-tracing method with local grid refinement algorithm is used to calculate the multiple reflections and Fresnel absorption on the keyhole wall. The filler material flows backward along the lateral side of the weld pool, and subsequently flows forward along the longitudinal plane to bring the additional alloying elements to the forepart of the weld pool. The occurrence of the bulging phenomenon may further prevent the downward transfer of the additional elements to the root of the weld pool. The numerical results show a good agreement with the experimental fusion line and element distribution. T2 - 11th CIRP Conference on Photonic Technologies [LANE 2020] CY - Online meeting DA - 07.09.2020 KW - Laser beam welding KW - Element transport KW - Filler material PY - 2020 AN - OPUS4-51568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -