TY - CONF A1 - Madkour, Sherif A1 - Szymoniak, Paulina A1 - Schönhals, Andreas T1 - Evidence of a Three-Layred Structure in Ultrathin PVME and PVME-PS Blend Films by Nanosized Relaxation Spectroscopy N2 - In the course of miniaturizing modern technology down to the molecular scale, much remain unknown about the materials behavior and the deviations from the bulk that might arises from confinement effects. Here, a combination of nano-sized relaxation spectroscopies (Broadband dielectric spectroscopy (BDS) and Specific heat spectroscopy (SHS); employing AC nanochip calorimetry) were utilized to investigate the glassy dynamics of ultra-thin films of Poly (vinyl methyl ether) (PVME) and of blends PVME / Polystyrene (PS) 50:50 wt-%,, which are miscible in bulk (thicknesses: ca. 8 nm – 160 nm, film thickness was controlled by ellipsometry, film topography by AFM). Both methods are sensitive to different probes; where SHS senses entropy fluctuations while BDS measures dipole fluctuations. For BDS measurements, a recently developed nano-structured electrode sample arrangement is employed, where ultra-thin films are spin-coated on an ultra-flat highly conductive silicon wafer, sandwiched between a wafer with nanostructured SiO2 nano-spacers with heights between 35 nm and 70 nm. For PVME films, two thickness independent processes were observed and interpreted to be the α-processes of a bulk-like layer and a process due to an absorbed layer to the substrate. This adsorbed layer further undergoes a confinement effect that results in the localization of the segmental dynamics, which results in an Arrhenius-like temperature dependence. A detailed analysis of the dielectric strengths of both processes reveals that the thickness of the adsorbed layer decreases with increasing temperature, while that of the bulk-like layer increases. For the blend system, by measuring the dynamic Tg in dependence of the film thickness, SHS showed that the Tg of the whole film was strongly influenced by a nanometer-thick surface layer at the polymer/air interface due to a self-assembling process. The dynamic Tg obtained from the SHS measurements decreased with decreasing film thickness. On the other hand, BDS measurements showed a completely different behavior. At high temperatures, the temperature dependence of the relaxation times of the films follows that of bulk-like PS/PVME; obeying the VFT-law. With decreasing temperature, the temperature dependence deviates from the VFT to an Arrhenius law; where the apparent activation energy decreases with decreasing film thickness. This is the first example where confinement induced changes were observed by BDS for ultra-thin films. All results were analyzed in detail in a comprehensive discussion. T2 - 14. Lähnwitzseminar on Calorimetry CY - Rostock-Warnemünde, Germany DA - 05.05.2016 KW - Ultra-Thin films PY - 2016 AN - OPUS4-36477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -