TY - CONF A1 - Wetzel, Annica A1 - Yesilcicek, Yasemin A1 - Witt, Julia A1 - Ozcan, Ozlem T1 - Old materials, new life: Using diffusion-controlled synthesis for discovery of novel alloy systems N2 - Multi principal element alloy (MPEAs) concept allows us to rethink how we develop application-tailored, sustainable materials. The vast composition space leads to nearly indefinite material combinations and will facilitate finding Pareto optimal materials with lower CO2 footprint and avoidance of critical minerals as design criteria. To probe this large compositional space efficiently, the use high-throughput screening methods is inevitable. Diffusion-controlled synthesis of gradient materials is the optimal technique for screening complex compositional materials that would otherwise require comprehensive modelling or experimental efforts. In this study, we have used a series of diffusion couples of pure metals and alloys with the aim to create a materials library with correlated data on composition and microstructure. With future recycling prospects in mind, and possible applications of Cu containing alloys in electrocatalytic carbon dioxide reduction and antimicrobial alloys we have generated diffusion couples of brass (Cu63Zn37) and bronze (Cu89Sn11) with either pure metals (Fe, Ni, etc.) or with binary or ternary alloys (FeNi, FeNiCr etc.). For different diffusion times and temperatures, we calculated diffusion constants for the material combinations. Following a detailed characterisation of the gradient materials, we have investigated general and local corrosion properties, electrocatalytic activity for oxygen evolution reaction (OER) and carbon dioxide reduction reaction (CRR) as well as mechanical properties (hardness, elastic modulus) on single-phase alloys synthesized in bulk by means of vacuum arc-melting based on the selected local compositions. In most cases, due to the short diffusion times, the contact between the diffusion couples lead to two separate diffusion zones and thus, different alloy families on both sides. Especially with ternary alloys, interesting selective diffusion processes and unexpected repulsion effects were observed. The presentation will provide an overview of the gradient materials with a focus on the functional properties of single-phase alloy families derived from them. T2 - MRS Spring 2023 CY - San Francisco, California, USA DA - 10.04.2023 KW - Chemically Complex Materials KW - CCMat KW - Corrosion KW - Electrocatalysis PY - 2023 AN - OPUS4-59406 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -