TY - CONF A1 - Riaz, Muhammad A1 - Kosslick, H. A1 - Al-Otabi, R. A1 - Ibad, F. A1 - Al-Otabi, F. A1 - Schulz, A. A1 - Jäger, Christian T1 - Influence of the acidic, thermal, and water vapour treatment on the catalytic performance of acidic hierarchical structured clinoptilolite N2 - Clinoptilolite is a natural, medium pore size zeolite. It contains a 2-deminsional pore system consisting of oxygen-8- membered and oxygen-10-membered rings. It is one of the most abundant natural zeolites. It is mainly used as ion exchanger and adsorbent for removal of toxic elements and compounds from the environment. Although clinoptilolite is microporous and can be acidified by ion exchange or acid treatment and a potential catalyst, reports on its application in catalysis are limited so far. This contribution deals with modification of a natural zeolite clinoptilolite, and the study of the influence of the textural and acidic properties on the catalytic performance in the acid catalyzed acetalization of bezaldehyde with butandiol-1,3 and the more demanding etherification of glycerol with t-butanol or isomerization of n-hexane. The samples were acidified by via ammonium-ion exchange followed by calcination and acid treatment. Samples were characterized by XRD regarding crystallinity and phase composition, FTIR, and N2-adsorption for porosity. The morphology was studied by TEM images. The acidity was studied by ammonia-TPD measurements and 1H solid state MAS NMR. Structure and structural changes caused by applied modifications were studied by 27Al- and 29Si MAS NMR measurements and TRAPDOR experiments as well as thermal analysis. The studied natural zeolite tuff contained ca. 90 ma.-% of clinoptilolite. The ion exchange behavior was studied with ammonium nitrate solution and for comparison with HCl solution of similar concentration. The cation exchange was followed by AES. The activation temperature was varied between 400-600°C. The catalytic test was performed e.g. using ca. 0.2 g of the catalyst and ca.10g of the aldehyde or alcohol using toluene as solvent and under reflux. Reaction water was removed via a by-pass. The isomerization of n-hexane was performed in a fall stream reactor at elevated temperature at gas phase. Water vapour saturated air was passed over clinoptilolite samples at elevated temperature for different time. The ion exchange experiments shows that ca 45% of the cations of clinoptilolite readily exchange with ammonium ions and protons supplied by acid treatment. However, exchange with the acid has a more severe impact on the clinoptilolite structure. More severe treatment times leads to a loss of activity in terms of acetal formation. Sample show all high conversions after 4 h of reaction, but show markedly differences after short reaction times. The presence of acidic protons of medium to strong strength is confirmed by ammonia-TPD and proton NMR measurements. The sample activation causes a partial dealumination as indicated by the appearance of 5- and 6-fold coordinated aluminum. Interestingly, the NMR results give first hints for a relation of the catalytic conversion with the amount of 5-fold coordinated aluminum. The results will be discussed in terms of a collaborative action of Brønsted acid sites and 5-fold coordinated aluminum. Modified clinoptilpolite is highly active in acid catalyst acetalization of aldehydes, isomerization of n-hexane and etherification of glycerol with t-butanol. Acidic natural clinoptilolite catalysts prepared via ammonium exchange followed by calcination and acid treatment shows a positive influence on acidity and porosity. Modification creates hierarchical micro-nano porosity. The specific surface area varies between ca. 45 m2/g and 257 m2/g. T2 - EUROPA CAT 2017 CY - Florence Italy DA - 27.08.2017 KW - Natural Zeolite Clinoptilolite PY - 2017 AN - OPUS4-40687 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -