TY - CONF A1 - Oesch, Tyler A1 - Weise, Frank A1 - Marx, Heidi A1 - Kositz, M. A1 - Huenger, K.-J. T1 - Analysis of the porosity of alkali-sensitive aggregates for the assessment of microstructure-dependent solubility in the context of ASR N2 - Intensified Alkali-Silica Reaction (ASR) damage has occurred on German roadways in recent years, leading to requirements for compulsory pre-construction investigation of aggregate alkali sensitivity using concrete tests with external alkali supply. However, since these tests are time-consuming and cost-intensive, there is interest in replacing them with a solubility test on pure aggregate in 0.1 M KOH solution at 80°C with a defined NaCl content (1wt.-%). In this context, the influence of aggregate pore structure on SiO2 and Al2O3 solubility was investigated in this project. This paper compares the results of porosity studies with X-ray Computed Tomography (3D-CT) and the Brunauer-Emmett-Teller (BET) method on individual quarried and river gravel granules of both rhyolite and greywacke. For visualization and quantification of both externally accessible and fully enclosed surfaces of granules using X-ray 3D-CT, special software tools were developed. The results demonstrated that the river gravel granules had significantly larger externally accessible surfaces than the quarried granules. BET measurements on individual stones showed, as expected, that measured surfaces were about three orders of magnitude larger than those from the X-ray 3D-CT analyses due to the higher spatial resolution of BET. There was no apparent correlation between the X-ray 3D-CT and BET surface areas. Mercury porosimetry measurements indicate that this may be due to the presence of significant porosity below the spatial resolution of the X-ray 3D-CT. A comparison of SiO2 and Al2O3 solubility measurements with the X-ray 3D-CT and BET surface area data resulted only in weak, inconclusive correlations, indicating the need for further experimental investigation. T2 - Microdurability Webinar CY - Online meeting DA - 12.10.2020 KW - X-ray Computed Tomography (CT) KW - Brunauer-Emmett-Teller (BET) Method KW - Alkali-Silica Reaction (ASR) KW - Porosity KW - Solubility PY - 2020 AN - OPUS4-51429 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -