TY - CONF A1 - Braun, U. A1 - Bachem, G. A1 - Müller, A. A1 - Kittner, Maria A1 - Altmann, Korinna A1 - Meierdierks, J. A1 - Grathwohl, P. A1 - Lackmann, C. A1 - Simic, A. A1 - Velki, M. A1 - Hollert, H. T1 - Detection of plastics in soil N2 - Soil acts as a final sink for pollutants. Microplastics from different sources such as plastic mulching, littering, compost, sewage sludge, sedimentary deposition, and tyre abrasion are expected to be found in soil. However, representative and comprehensive information is missing on the sources, transport, and fate. Therefore, a reliable analysis method for microplastics in soils needs to be developed. The presented work describes the development of a procedure for microplastics analysis in soils. A representative sampling based on the on-site conditions and a sample preparation method was established and comprised of a drying step, the separation of microplastic particles > 1 mm, and a density separation for particles < 1 mm. The detection of the large microplastic particles (> 1 mm) was conducted with Attenuated Total Reflection - Fourier Transform infrared Spectroscopy (ATR-FTIR) , while Thermal Extraction Desorption - Gas Chromatography / Mass Spectrometry (TED-GC/MS) was applied for particles < 1 mm, gaining information on the type of polymer and mass fraction. Based on the established method, 14 environmental soil samples ? with different exposure of microplastics from agriculture, industrial sites, roads, and floods were investigated. Due to the arbitrary microplastic particle distribution among the samples for large microplastics, it was reasoned that the found particles were unrepresentative. In contrast, microplastic particles < 1 mm were discovered in a high mass in soil samples exposed to plastic mulching or fertilization with sewage sludge or compost (0 – 115 mg/kg). On average, microplastic contents detected in soil samples taken from a construction site and an inner-city lake were higher (13 – 238 mg/kg). As expected, microplastic content in soil sampled in proximity to roads was more pronounced in the upper soil layers. In contrast, very remote sampling sites, expectably uncontaminated, did not lead to the detection of microplastic regarding to thermoanalytical detection method. In a proof of concept experiment several in vivo and in vitro ecotoxicological tests were applied to evaluate the effect of microplastics (tyre abrasion, polystyrene containing hexabromocyclododecane) in natural soils. In summary, while no effects of the examined probes could be detected on higher levels of biological organization after exposures to earthworm E. andrei, significant changes in several oxidative stress related biomarkers were observed. T2 - SETAC Europe 2022 CY - Kopenhagen, Denmark DA - 15.05.2022 KW - Microplastic KW - TED-GC/MS KW - Soil PY - 2022 AN - OPUS4-55872 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -