TY - CONF A1 - Illner, M. A1 - Meyer, Klas A1 - Paul, Andrea A1 - Esche, E. A1 - Maiwald, Michael A1 - Repke, J.-U. T1 - Operation and optimal control of multiphase systems – Hydroformylation in microemulsions on the mini-plant scale N2 - develops new process concepts, involving innovative tuneable solvent systems to enable rather difficult or inapplicable synthesis paths. One possible concept is the hydroformylation of long-chained alkenes in microemulsions. For this, a modular mixer-settler concept was proposed, combining high reaction rates and efficient catalyst recycling via the application of technical grade surfactants. The feasibility of such a concept is evaluated in a fully automated, modular mini-plant system within which the characteristics of such a multiphase system pose several obstacles in operating this mini-plant. Maintaining a stable phase separation for efficient product separation and catalyst recycling is complicated by small and highly dynamic operation windows as well as poor measurability of component concentrations in the liquid phases. In this contribution, a model-based strategy is presented to enable concentration tracking and phase state control within dynamic mini-plant experiments. Raman spectroscopy is used as an advanced process analytical tools, which allows for online in-situ tracking of concentrations. Combined with optical and conductivity analysis optimal plant trajectories can be calculated, solving a dynamic optimization problem under uncertainty. Applying these, a stable reaction yield of 40 % was achieved, combined with an oil phase purity of 99,8 % (total amount of oily components in the oil phase) and a catalyst leaching below 0.1 ppm. T2 - 4th European Conference on Process Analytics and Control Technology (EuroPACT 2017) CY - Potsdam, Germany DA - 10.05.2017 KW - Process monitoring KW - Hydroformylation KW - Mini-plant KW - Process control KW - Process analytical technology KW - EuroPACT KW - InPROMPT PY - 2017 UR - http://dechema.de/en/europact17.html AN - OPUS4-40233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -