TY - JOUR A1 - Lu, Xin A1 - Hicke, Konstantin A1 - Breithaupt, Mathias A1 - Strangfeld, Christoph T1 - Distributed Humidity Sensing in Concrete Based on Polymer Optical Fiber JF - Polymers N2 - We present a preliminary investigation on distributed humidity monitoring during the drying process of concrete based on an embedded polymer optical fiber (POF). The water dissipated into the POF changes several properties of the fiber such as refractive index, scattering coefficient and attenuation factor, which eventually alters the Rayleigh backscattered light. The optical time Domain reflectometer (OTDR) technique is performed to acquire the backscattered signal at the wavelengths 650 nm and 500 nm, respectively. Experimental results show that the received signal increases at 650 nm while the fiber attenuation factor clearly increases at 500 nm, as the concrete dries out. In the hygroscopic range, the information retrieved from the signal change at 650 nm agrees well with the measurement result of the electrical humidity sensors also embedded in the concrete sample. KW - Distributed fiber optic sensing KW - Distributed humidity sensing KW - Polymer optical fibers KW - Concrete drying KW - Material moisture KW - Embedded humidity sensors PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537644 DO - https://doi.org/10.3390/polym13213755 SN - 2073-4360 VL - 13 IS - 21 SP - 3755 PB - MDPI CY - Basel, Switzerland AN - OPUS4-53764 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -