TY - CONF A1 - Emmerling, Franziska T1 - Shaken not stirred: enhancing the flavor of mechanochemistry N2 - Mechanochemistry is increasingly used for synthesizing soft matter materials including metal organic compounds and cocrystals.1 The ever-increasing interest in this method is contrasted by a limited mechanistic understanding of the mechanochemical reactivity and selectivity. Time-resolved in situ investigations of milling reactions provide direct insights in the underlying mechanisms.2-4 We recently introduced different setups enabling in situ investigation of mechanochemical reactions using synchrotron XRD combined with Raman spectroscopy and thermography. The presented setup allows the detection of crystalline, amorphous, eutectic, and liquid intermediates. Furthermore, the chemical composition of the reaction mixture was found to be directly correlated with changes in the temperature profile of the reaction. The resulting deeper kinetic and thermodynamic understanding of milling processes is the key for future optimization of mechanochemical syntheses. In this contribution, we will discuss our recent results investigating the formation of (polymorphic) cocrystals and coordination polymers.2,3,5 Our results indicate that in situ investigation of milling reactions offer a new approach to tune and optimize mechanochemical syntheses. T2 - BCA/BACG joint spring meeting CY - Online meeting DA - 29.03.2021 KW - Mechanochemistry KW - Cocrystals KW - Crystal Engineering PY - 2021 AN - OPUS4-53995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -