TY - THES A1 - Höhne, Christian T1 - Multimodal approach for the numerical simulation of ultrasonic guided waves in cylindrical structures of non-constant thickness N2 - Guided waves hold great potential for applications in the field of ultrasonic nondestructive testing. Examples of possible applications are the ultrasonic testing and structural health monitoring of wheelset-axles as used in trains. Depending on the particular type, these axles can be described as either thick cylindrical rods or thick walled hollow cylinders with varying thickness. Wheelset-axles are safety relevant components that have to be inspected on a regular basis. The use of guided waves would allow a full inspection while accessing only the front faces of the axle, thus potentially speeding up the inspection procedure. In order to develop such an inspection technique, however, detailed knowledge of wave propagation through the axle is required. Established mesh-based procedures, like the finite element method, could be used to simulate guided wave propagation in such structures. However, due to the size of the axle itself and the comparatively fine mesh that is dictated by the wavelengths usually applied in ultrasonic testing, these mesh-based procedures would be very expensive in terms of computation times. The multimodal approach seems to be a very promising alternative that can be expected to provide results significantly faster. The multimodal method uses the guided wave modes of a corresponding waveguide with a constant cross-section as basis in which the local sound field at any given position in a waveguide with varying thickness can be expressed. Thereby the numerical effort is reduced to solving the one dimensional differential equations that govern the evolution of the coefficients in the mode spectrum along the waveguide. Once the sound field has been calculated, a time dependence can easily be included, which allows the simulation of pulse propagation through the waveguide. In this thesis, the multimodal approach, as described for the calculation of Lamb-waves in plates with non-constant thickness, is extended to other types of elastic waveguides such as cylindrical rods and thick walled hollow cylinders. For the sake of simplicity, investigations are restricted to axially symmetric wave modes. The results obtained with the multimodal approach are validated against FEM-simulations. It is shown that the multimodal method potentially holds a great advantage in terms of computation time over commercially available software based on the finite element method. Finally, the multimodal method is evaluated with respect to possible future applications on wheelset-axles. KW - Guided waves KW - Wave propagation PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:co1-opus4-41255 SP - 1 EP - 123 PB - Brandenburgische Technische Universität CY - Cottbus AN - OPUS4-40884 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -