TY - CONF A1 - Donsky, I. S. A1 - Lippitz, Andreas A1 - Adeli, M. A1 - Haag, R. A1 - Unger, Wolfgang T1 - 2D nanomaterials with switchable pathogen binding N2 - Graphene derivatives have shown great promise in the field of pathogen binding and sensing. Due to their diverse applications, they show a variety of activities that range from bacterial adhesion to bacterial resistance. Therefore, domination of the graphene-pathogen interactions is highly relevant for producing 2D platforms with the desired applications. In order to gain control over the interactions between graphene and biosystems, mechanisms should be fully understood. The surface functionality of graphene is one of the most important factors that dominates its interactions with biosystems and pathogens. Covalent functionalization is a robust method through which functionality, chemical structure, and subsequently physicochemical properties of graphene are abundantly manipulated. A critical issue for preparing graphene-based 2D materials with a defined surface structure, however, is controlling the functionalization in terms of number, position, and type of functional groups. T2 - 9th Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 13.12.2017 KW - Graphene KW - Functionalization KW - XPS KW - C Kedge NEXAFS PY - 2017 AN - OPUS4-43456 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -