TY - CONF A1 - Prost, J. A1 - Windbichler, A. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Radtke, Martin A1 - Pepponi, G. A1 - Migliori, A. A1 - Karydas, A.G. A1 - Czyzycki, M. A1 - Eichert, D.M. A1 - Jark, W.H. A1 - Wobrauschek, P. A1 - Streli, C. T1 - Cr, Cu and Zn K-edge SR-TXRF-XANES of indoor aerosol samples at BESSY II and ELETTRA N2 - Airborne particulate matter is an issue of growing concern in industrialized countries. Particles with diameters of less than 10 μm (especially those smaller than 2.5 μm) can enter the human respiratory system and contribute to various diseases depending on their chemical composition and the chemical bonding state, in which elements are present. This chemical speciation can be obtained using X-ray absorption near-edge structure analysis (XANES), which requires a tunable excitation source and therefore has to be carried out at synchrotron facilities. Our special interest lies on the analysis of indoor airborne particulate matter, as particle composition and health effects of outdoor particles have been studied abundantly. For this work, samples were collected in various office rooms in the Atominstitut (ATI) building. The BAMline at BESSYII features a double-multilayer monochromator (DMM) and a double-crystal monochromator (DCM). The DCM offers an energy resolution E/ΔE of around 103, which makes it suitable for XANES applications. The ATI SR-TXRF vacuum chamber, formerly located at HASYLAB, Beamline L, is now available at the BAMline. The chamber offers a sample changer for up to 8 quartz reflectors and a 30 mm² silicon drift detector (SDD) was used. Aerosol samples were produced using a modified three-stage Dekati™ impactor. For this work, only the coarse (2.5 to 10 μm) and the fine particle fraction (1 to 2.5 μm), were of interest. XANES results of Cr, Cu and Zn will be presented on this poster. The X-ray Fluorescence beamline at ELETTRA operates in partnership with the IAEA an ultra-high vacuum instrument with a 7-axis manipulator suitable for a variety of X-ray analytical techniques, such as grazing incidence and total reflection X-ray fluorescence analysis (GI-XRF and TXRF), X-ray reflectometry (XRR) and XANES. Samples were produced using a four-stage Sioutas Personal Cascade Impactor. With this impactor, it is possible to produce size-fractionated samples down to the sub-μm range (Stages: A > 2.5 μm, B 1 to 2.5 μm, C 0.5 to 1 μm and D 0.25 to 0.5 μm). Direct sampling was performed on siliconized 25 mm Si wafers suitable for TXRF. Cu-K edge SR-TXRF-XANES analysis was carried out for samples of all impactor stages. Results of these experiments will be shown. T2 - European Conference on X-Ray Spectrometry (EXRS) CY - Gothenburg, Sweden DA - 19.06.2016 KW - Synchrotron KW - BAMline KW - BESSY KW - Aerosol KW - XANES PY - 2016 AN - OPUS4-38764 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -