TY - CONF A1 - Bruno, Giovanni A1 - Müller, Bernd R. A1 - Hentschel, Matthias P. A1 - Kupsch, Andreas A1 - Lange, A. A1 - Meinel, Dietmar A1 - Staude, A. T1 - Applications of X-ray refraction to non-destructive characterization of ceramics and composites N2 - X-ray refraction is analogous to visible light deflection by matter, with two main differences: 1- convex objects cause divergence (i.e., the refraction index n is smaller than 1), and 2- deflection angles are very small, from a few seconds to a few minutes of arc (i.e., n is near to 1). Trivially but importantly, deflection of X-rays is also sensitive to the orientation of the object boundaries. These features make X-ray refraction techniques extremely suitable to a) detect defects such as pores and microcracks, and quantify their densities in bulk (light) materials, and b) evaluate porosity and particle properties such as orientation, size, and spatial distribution (by mapping). While X-ray refraction techniques cannot in general image single defects, their detectability is simply limited by the wavelength of the radiation. We will thereby show the application of X-ray refraction 2D mapping (topography) and tomography to different sorts of problems in ceramic science and technology: 1) Sintering of SiC green bodies; 2) Porosity analysis in diesel particulate filter silicates; 3) fiber de-bonding in metal and polymer matrix composites; 4) micro-cracking of glass-precursor -eucryptite. We will see that the use of X-ray refraction analysis yields quantitative results, also directly usable in available models. T2 - Herbsttreffen des Verbandes der Keramik Industrien CY - Fraunhofer IWM, Freiburg im Breisgau, Germany DA - 27.10.2016 KW - Röntgenrefraktion KW - Kompositen KW - Keramiken KW - Computertomographie KW - TF Material PY - 2013 AN - OPUS4-38301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -