TY - CONF A1 - Oster, Simon A1 - Scheuschner, Nils A1 - Chand, Keerthana A1 - Breese, Philipp Peter A1 - Becker, Tina A1 - Heinrichsdorff, F. A1 - Altenburg, Simon T1 - From Thermographic In-situ Monitoring to Porosity Detection – A Deep Learning Framework for Quality Control in Laser Powder Bed Fusion N2 - In this study, we present an enhanced deep learning framework for the prediction of porosity based on thermographic in-situ monitoring data of laser powder bed fusion processes. The manufacturing of two cuboid specimens from Haynes 282 (Ni-based alloy) powder was monitored by a short-wave infrared camera. We use thermogram feature data and x-ray computed tomography data to train a convolutional neural network classifier. The classifier is used to perform a multi-class prediction of the spatially resolved porosity level in small sub-volumes of the specimen bulk. T2 - Sensor and Measurement Science International CY - Nurnberg, Germany DA - 08.05.2023 KW - Laser powder bed fusion KW - In-situ monitoring KW - Thermography KW - Machine Learning KW - Porosity PY - 2023 AN - OPUS4-57614 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -