TY - CONF A1 - Schroepfer, Dirk A1 - Rhode, Michael A1 - Erxleben, Kjell A1 - Richter, Tim T1 - Dissimilar metal joints of multiple principal element alloys friction stir welded to conventional austenitic steel 304 N2 - Multiple principal element alloys (MPEA) represent a class of materials consisting of at least three alloying elements, each with 5 to 35 atomic %. The MPEAs encompass the so-called high-entropy (HEA) and medium-entropy alloys (MEAs) and are fundamentally different from conventional materials like the Fe-based steel. Within the last 20 years, highly innovative MPEA with individually adjustable properties for industrial applications were identified. However, the focus has been on pure material synthesis. With the increase in available material quantities, the focus is now on processing issues such as joining and welding. In that connection, the weldability of MPEAs has received very little attention so far and experience in dissimilar metal welds (DMWs) is lacking so far but. The present study summarizes comprehensive experimental results on the weldability of MPEA-DMWs and their resulting microstructure. For this purpose, two equiatomic MPEAs, CoCrFeMnNi (HEA) and CoCrNi (MEA) in cold-rolled and annealed conditions were joined by solid-state friction stir welding (FSW) to an austenitic stainless steel 316L. The DMWs showed very interesting microstructure features. In addition, the mechanical-technological properties were obtained by instrumented tensile tests, and the local straining was determined in-situ by digital image correlation (DIC). A significant influence of the FSW processing on the mechanical performance was identified,in terms of the formation of FSW-specific defects like whitebands or tunnel defects. The experiments proofed the general (but currently limited) FS weldability of the MPEAs to conventional austenitic steel grade AISI 304. This enables targeted further considerations of these highly innovative MPEAs. T2 - AJP 2023: 3rd International Conference on Advanced Joining Processes 2023 CY - Braga, Portugal DA - 19.10.2023 KW - Multi-principal element alloys KW - Friction stir welding KW - Dissimilar metal weld (DMW) joint KW - Mechanical properties KW - Digital image correlation (DIC) PY - 2023 AN - OPUS4-58678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -