TY - CONF A1 - Stamm, Michael T1 - Infrared Thermography of wind turbine rotor blades: 3 use cases N2 - Thermography is a widely accepted non-invasive measurement method and is generally used in various areas of the life cycle of infrastructure and machinery. This includes design, production and maintenance. Thermography is particularly suitable for remote inspection of large areas that are difficult to reach. In this presentation, applications of thermography in the field of wind energy will be shown, touching on three explicit examples from rotor blade inspection. Experimental testing and validation: Thermography can measure and visualise the stress distribution on the surface during cyclic tests of rotor blades and rotor blade sections. The so-called thermoelastic stress analysis makes use of special evaluation algorithms (Lockin analysis) of the measurement data and the cyclic loading of components. An advantage of the measurement methods compared to other measurement methods such as strain gauges or digital image correlation is that it does not require any extra treatment or sensoring of the components. In the work shown here, repair methods are optimised and evaluated in cyclic tests on shell test specimens. Operation and maintenance: Rotor blades can be inspected from the ground during operation using passive thermography. Here, the integration of weather forecasts and conditions as input for simulations is crucial and will be demonstrated with some examples from the field. The goal of the ongoing research is to obtain detailed insights into the internal structure of the inspected rotor blades with individual measurements. A specially developed automated measuring system is able to measure a wind turbine (one-sided) within 5 minutes without impacting its operation. Environmental impact: In cases where less strict time and economic constraints apply than in the maintenance of rotor blades in operation, thermography can also be used to realise other inspection processes that take more time. Examples of this are quality control or the characterisation of rotor blades during dismantling. In the latter case, for example, it can be crucial to know which components such as foam, balsa, belt and spar are present in which parts of the blade when dismantling the rotor blades. Long-term measurements (~1-2 h) under suitable weather conditions can provide good insights into the inner structure of the rotor blades, both during disassembly and during quality control before installation. For this purpose, the sun is used as a heat source, which induces a thermal response of the rotor blades. The thermal behaviour of the rotor blades then allows conclusions to be drawn about the internal structure. T2 - EERA DeepWind conference 2023 CY - Trondheim, Norway DA - 18.01.2023 KW - Thermography KW - Wind turbine blade KW - Inspection PY - 2023 AN - OPUS4-58501 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -