TY - CONF A1 - Waske, Anja A1 - Dzekan, D. A1 - Neumann, B. A1 - Berger, D. A1 - Sellschopp, K. A1 - Stork, A. A1 - Nielsch, K. A1 - Fähler, S. T1 - Energy Harvesting Using Thermomagnetic Generators with Magnetocaloric Materials N2 - To date, there are only very few technologies available for the conversion of low temperature waste heat to electricity. More than a century ago, thermomagnetic generators were proposed, which are based on a change of magnetization with temperature, switching a magnetic flux, which according to Faraday’s law induces a voltage. In this talk, we first describe the principle of thermomagnetic generators. Then we focus on the impact of topology of the magnetic circuit within thermomagnetic generators. We demonstrate that the key operational parameters strongly depend on the genus, i.e. the number of holes within the magnetic circuit. A pretzel-like topology of the magnetic circuit with genus =3 improves the performance of thermomagnetic generators by orders of magnitude. We will show that this technique is on its way to becoming competitive with thermoelectrics for energy harvesting near room temperature. T2 - TMS Annual Meeting CY - San Diego, CA, USA DA - 23.02.2020 KW - Materials science KW - Energy harvesting PY - 2020 AN - OPUS4-51903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -