TY - GEN A1 - Schlichting, S. A1 - Hönig, Gerald M. O. A1 - Müßener, J. A1 - Hille, P. A1 - Grieb, T. A1 - Teubert, J. A1 - Schörmann, J. A1 - Wagner, M. R. A1 - Rosenauer, A. A1 - Eickhoff, M. A1 - Hoffmann, A. A1 - Callsen, G. T1 - Tuning of the Quantum-Confined Stark Effect in Wurtzite [000-1] Group-III-Nitride Nanostructures by the Internal-Field-Guarded-Active-Region Design T2 - arXiv.org N2 - Recently, we suggested an unconventional approach [the so-called Internal-Field-Guarded-Active-Region Design (IFGARD)] for the elimination of the crystal polarization field induced quantum confined Stark effect (QCSE) in polar semiconductor heterostructures. And in this work, we demonstrate by means of micro-photoluminescence techniques the successful tuning as well as the elimination of the QCSE in strongly polar [000-1] wurtzite GaN/AlN nanodiscs while reducing the exciton life times by more than two orders of magnitude. The IFGARD based elimination of the QCSE is independent of any specific crystal growth procedures. Furthermore, the cone-shaped geometry of the utilized nanowires (which embeds the investigated IFGARD nanodiscs) facilitates the experimental differentiation between quantum confinement- and QCSE-induced emission energy shifts. Due to the IFGARD, both effects become independently adaptable. PB - Cornell University CY - Ithaca, NY KW - Piezoelectricity KW - Quantum Confined Stark Effect KW - Nanophotonics KW - Semiconductor Nanostructures KW - Spontaneous Polarization PY - 2017 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/41101 AN - OPUS4-41101 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-411013 UR - https://arxiv.org/abs/1707.06882 SN - 2331-8422 IS - arXiv:1707.06882 SP - 1 EP - 9 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany