TY - JOUR A1 - Preuß, Bianca A1 - Lindner, Thomas A1 - Hanisch, Niclas A1 - Giese, Marcel A1 - Schröpfer, Dirk A1 - Richter, Tim A1 - Rhode, Michael A1 - Lampke, Thomas T1 - Surface Functionalization of Novel Work‐Hardening Multi‐Principal‐Element Alloys by Ultrasonic Assisted Milling JF - Advanced Engineering Materials N2 - The development of multi‐principal‐element alloys (MPEAs) with unique characteristics such as high work hardening capacity similar to well‐known alloy systems like Hadfield steel X120Mn12 (ASTM A128) is a promising approach. Hence, by exploiting the core effects of MPEAs, the application range of conventional alloy systems can be extended. In the present study, work‐hardening MPEAs based on the equimolar composition CoFeNi are developed. Mn and C are alloyed in the same ratio as for X120Mn12. The production route consists of cast manufacturing by an electric arc furnace and surface functionalization via mechanical finishing using ultrasonic‐assisted milling (USAM) to initiate work hardening. The microstructure evolution, the hardness as well as the resulting oscillating wear resistance are detected. A pronounced lattice strain and grain refinement due to the plastic deformation during the USAM is recorded for the MPEA CoFeNi‐Mn12C1.2. Consequently, hardness increases by ≈380 HV0.025 in combination with a higher oscillating wear resistance compared to the X120Mn12. This shows the promising approach for developing work‐hardening alloys based on novel alloy concepts such as MPEAs. KW - Electric arc furnace KW - Finish milling KW - High manganese steels KW - Multi-principal element alloy KW - Ultrasonic-assisted milling KW - Work hardening PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608008 DO - https://doi.org/10.1002/adem.202400339 SN - 1438-1656 SP - 1 EP - 12 PB - Wiley VHC-Verlag AN - OPUS4-60800 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -