TY - CONF A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Aging of elastomer seals for nuclear waste containers – Methods and lifetime prediction N2 - At BAM, which is a federal institute for materials research and testing in Germany, it is one of our tasks to evaluate the safety of casks designed for transport and/or storage of radioactive material. This includes assessment of elastomeric seals applied in the casks. One of the aims is to identify a suitable method for estimating the service lifetime of the seals with regard to the requirements for long-term safety (40 years and more) of the containers. Therefore, we started an accelerated ageing programme with selected rubbers often used for seals (HNBR, EPDM and FKM) which are aged at four different temperatures (75 °C, 100 °C, 125 °C and 150 °C) for up to five years. In order to assess sealability, O-rings were aged in compression by 25 % (corresponding to the compression during service) between plates as well as in flanges that allow leakage rate measurements. For comparison, uncompressed O-rings were aged as well. In order to understand the underlying ageing mechanisms in each material, material properties such as hardness, density and tensile properties were examined. Additionally, compression set (CS), which represents the recovery behaviour of a seal after release from compression, is measured. For obtaining results closely related to practical conditions, O-rings with a full-scale cord diameter of 10 mm were aged. However, this set-up can lead to heterogeneous ageing caused by diffusion-limited oxidation (DLO) effects especially for HNBR, resulting in distorted bulk properties such as compression set. However, if DLO-affected data is excluded, extrapolations of CS data are possible using time-temperature shifts. For selecting an appropriate end-of-lifetime criterion, leakage rate measurements were performed, since leakage rate is the only characteristic directly correlated to the performance of the sealing system. A significant increase in leakage rate was considered as the end of the lifetime. However, the O-rings remained leak tight under static conditions even though material properties had already degraded strongly. For this reason, a modified, more demanding leakage test involving a fast small decompression of the seal was developed that allowed determining a more conservative end-of-lifetime criterion with a safety margin for EPDM seals. FKM, which is a very heat and oxidation resistant material, exhibited only little degradation, even though it had the smallest activation energy. T2 - Polymers in nuclear applications CY - Espoo, Finland DA - 27.11.2019 KW - rubber KW - leakage KW - degradation KW - HNBR KW - EPDM KW - FKM PY - 2019 UR - https://www.energiforsk.se/media/27280/agingseals_kommling_bam.pdf AN - OPUS4-49918 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -