TY - CONF A1 - Feldkamp, Martin A1 - Gleim, Tobias A1 - Quercetti, Thomas A1 - Wille, Frank T1 - Combustion Chamber Design for Encapsulated Wood-Component Testing T2 - Wood & Fire Safety 2024 - Proceedings of the 10th International Conference on Wood & Fire Safety 2024 N2 - Heavy-weight packages for the safe transport of radioactive material are equippedwith impact limiters often built ofwood-filled steel sheet structures to fulfil the requirements of the International Atomic Energy Agency (IAEA) regulations. The requirements definemechanical tests followed by a thermal test, including criteria ensuring the package design’s ability to withstand severe accidents and provide a high level of technical safety. Impact limiters are a package component mainly designed for the packages to withstand severe mechanical accident scenarios. In drop tests the impact limiters absorb the kinetic energy during impact of the package. The package must then - with its pre-damaged impact limiters - endure a thermal test defined precisely in the IAEA regulations as a 30-min fully engulfing 800 °C-fire. After the fire, a wood-filled impact limiter may continue to release thermal energy from an ongoing combustion process, defining relevant package temperatures. The energy flow from a possible burning impact limiter to the package is important for the safety evaluation of transport packages. To investigate the combustion behaviour of densely packed layers of spruce wood, encapsulated in pre-damaged cylindrical metal enclosures, a test set-up has been realised. The set-up consists of a combustion chamber to perform these tests under defined boundary conditions. The temperature development of the test specimens will be observed fromoutside with a thermographic imager, with HD-Cameras, and the mass loss will be measured during the entire test. Airflow conditions in the combustion chamber are analysed using Computational Fluid Dynamics (CFD) calculations in OpenFOAM. The planned combustion test setup is described. T2 - Wood & Fire Safety 2024 CY - Štrbské Pleso, Slovakia DA - 12.05.2024 KW - Fire KW - Combustion KW - Smouldering PY - 2024 SN - 978-3-031-59176-1 SN - 978-3-031-59179-2 SN - 978-3-031-59177-8 DO - https://doi.org/10.1007/978-3-031-59177-8 SP - 215 EP - 222 PB - Springer Nature Switzerland AG CY - Gewerbestrasse 11, 6330 Cham, Switzerland AN - OPUS4-60226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -