TY - CONF A1 - Traub, Heike A1 - Schannor, Mathias A1 - Stach, A. A1 - Ludwig, A. T1 - Laser Ablation ICP-ToF-MS to investigate the interaction of MRI contrast agents with extracellular matrix components N2 - Non-specific Gd-based contrast agents (GBCAs) have long been routinely used in clinical magnetic resonance imaging (MRI). However, the interaction of such contrast agents with tissue components is not yet fully understood. Alongside cells, the extracellular matrix (ECM) is an important component of mammalian tissue. It is a three-dimensional network of macromolecules that provides structural and biochemical support to the surrounding cells. Many diseases, including inflammation, fibrosis, and tumour invasion, are associated with characteristic ECM changes. The ECM consists of structural proteins (e.g., collagen, elastin) and proteoglycans, which are composed of glycosaminoglycans (GAGs) covalently linked to a protein core. GAGs are long, linear polysaccharides consisting of repeated disaccharide units widely varying in molecular mass, disaccharide structure, and sulfation degree. Characteristic of GAGs is their ability to form complexes with cations such as lanthanides. Thus, GAGs could be a potential binding partner for GBCA molecules as a whole or for dechelated Gd. Currently, there are still many unanswered questions about the interaction of contrast agents with ECM components. This study therefore investigated the uptake and distribution of different GBCAs in spheroids that mimic biological tissue and have different ECM expressions. Chinese hamster ovary (CHO) cells and GAG-depleted CRL-2242 cells were used to prepare spheroids. These were then incubated for several minutes with gadolinium chloride and various linear and macrocyclic GBCAs. Cryosections of the spheroids were used for imaging measurements with a low-dispersion laser ablation system coupled to an inductively coupled plasma time-of-flight mass spectrometer (LA/ICP-ToF-MS). Gelatine doped with multi-element solutions was used for matrix-matched quantification of Gd and other relevant elements such as Cu, Fe and Zn. Although all spheroids were incubated with identical Gd concentrations, significant differences in the amount of Gd taken up were observed. Gadolinium chloride is absorbed more strongly than the contrast agents and accumulates mainly in the outer regions of the spheroids. In contrast, after incubation with the linear and macrocyclic contrast agents, Gd is detected in the interior of both types of spheroids. T2 - European Workshop on Laser Ablation, EWLA 2024 CY - Ghent, Belgium DA - 02.07.2024 KW - ICP-MS KW - Laser ablation KW - Spheroid KW - Contrast agent PY - 2024 AN - OPUS4-60575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -