TY - CONF A1 - Reichel, Levin A1 - Schroepfer, Dirk A1 - Kannengiesser, Thomas A1 - Kromm, Arne A1 - Becker, Amadeus T1 - Residual stress formation during repeated gouging and repair welding cycles of high-strength steels N2 - The construction of foundation and erection structures for wind power plants requires the use of modern, sustainable and resource-efficient high-strength fine-grained structural steels. Weld defects due to the welding process are unacceptable. To overcome this issue, local thermal gouging followed by re-welding is a common and cost-effective method. The high shrinkage restraint of the gouge by the surrounding structure can cause crack initiation when design and re-weld induced residual stresses are superimposed. This risk is intensified by the progressive degradation of the microstructure and mechanical properties of high-strength steels during the weld repair process. This investigation focuses on high-strength steels S500MLO for offshore applications and S960QL for mobile crane applications. The reduction and development of residual stresses caused by local thermal gouging and re-welding was investigated. Digital Image Correlated (DIC) stress-strain analysis was performed during preheating, welding and cooling. The results of the global DIC analysis and local longitudinal and transverse residual stresses of the weld determined by X-ray diffraction were found to be in good agreement. Furthermore, different stress levels were identified during gouging and welding. Repeated repair cycles led to an increase of longitudinal and transverse residual stresses in the weld metal as well as a hardness increase in the heat affected zone. T2 - European Conference on Residual Stresses - ECRS11 CY - Prague, Czech Republic DA - 03.06.2024 KW - Repair welding KW - Gouging KW - Residual stress KW - Repair cycles KW - High-strength steels PY - 2024 AN - OPUS4-60215 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -