TY - CONF A1 - Thünemann, Andreas A1 - Kästner, Claudia T1 - (Bio)polymers tune the catalytic activity of silver nanoparticles N2 - We report on the development of ultra-small core-shell silver nanoparticles synthesized by an up-scaled modification of the polyol process. It is foreseen to use these thoroughly characterized particles as reference material to compare the catalytic and biological properties of functionalized silver nanoparticles. Small-angle X-ray scattering (SAXS) analysis reveal a narrow size distribution of the silver cores with a mean radius of RC = 3.0 nm and a distribution width of 0.6 nm. Dynamic light scattering (DLS) provides a hydrodynamic radius of RH = 10.0 nm and a PDI of 0.09. The particles’ surface is covered with poly(acrylic acid) (PAA) forming a shell with a thickness of 7.0 nm, which provides colloidal stability lasting for more than six months at ambient conditions. The PAA can be easily exchanged by biomolecules to modify the surface functionality. Replacements of PAA with glutathione (GSH) and bovine serum albumin (BSA) have been performed as examples. We demonstrate that the particles effectively catalyze the reduction of 4-nitrophenol to 4-aminophenol with sodium borohydride. The tunable catalytic activity of (436 ± 24) L g-1 s-1 is the highest reported in literature for silver nanoparticles. T2 - POLYDAYS 2016 CY - Potsdam, Germany DA - 28.09.2016 KW - Nanoparticles KW - Small-angle X-ray scattering KW - SAXS KW - Silver PY - 2016 AN - OPUS4-37622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -