TY - CONF A1 - Pfennig, Anja A1 - Linke, Barbara A1 - Schulz, Sabrina A1 - Kranzmann, Axel T1 - Supercritical CO2-corrosion in pipe steels during carbon capture and storage CCS T2 - 3rd International congress on green process engineering (GPE 2011) N2 - The CCS technique involves the compression of emission gasses in deep geological layers. To guarantee the safety of the site, CC>2-corrosion of the injection pipe steels has to be given special attention when engineering CCS-sites. To get to know the corrosion behaviour samples of the heat treated Steel 1.72252CrMo4, used for casing, and the stainless injection-pipe Steel 1.4034 X46Crl3 were kept at T=60 °C and ambient pressure as well as p=100 bar for 700 h - 8000 h in a CC>2-saturated synthetic aquifer environment similar to possible geological onshore CCS-sites in the northern German Basin. The isothermal corrosion behaviour obtained by mass gain of the steels in the gas phase, the liquid phase and the intermediate phase gives surface corrosion rates around 0.1 to 0.8 mm/year at ambient pressure and much lower about 0.02 to 0.2 mm/year at 100 bar where the CO2 is in its supercritical state. Severe pit corrosion with pit heights around 4.5 mm are only located on the 42CrMo4 Steel. Main phase of the continuous complicated multi-layered carbonate/oxide structure is siderite FeCCh in both types of Steel. T2 - 3rd International congress on green process engineering (GPE 2011) CY - Kuala-Lumpur, Malaysia DA - 06.12.2011 KW - Steel KW - Pipeline KW - Corrosion KW - Carbonate layer KW - CCS KW - Supercritical CO2- KW - CO2-storage PY - 2011 SP - 1 EP - 6 AN - OPUS4-25535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -