TY - CONF A1 - Hüllmann, Dino A1 - Neumann, Patrick P. A1 - Lilienthal, A. J. T1 - Gas Dispersion Fluid Mechanics Simulation for Large Outdoor Environments T2 - 36th Danubia Adria Symposium on Advances in Experimental Mechanics - Extended Abstracts N2 - The development of algorithms for mapping gas distributions and localising gas sources is a challenging task, because gas dispersion is a highly dynamic process and it is impossible to capture ground truth data. Fluid-mechanical simulations are a suitable way to support the development of these algorithms. Several tools for gas dispersion simulation have been developed, but they are not suitable for simulations of large outdoor environments. In this paper, we present a concept of how an existing simulator can be extended to handle both indoor and large outdoor scenarios. T2 - 36th Danubia Adria Symposium on Advances in Experimental Mechanics CY - Pilsen, Czech Republic DA - 24.09.2019 KW - Gas dispersion simulation KW - CFD KW - Gas tomography PY - 2019 SN - 978-80-261-0876-4 SP - 49 EP - 50 CY - Pilsen, Czech Republic AN - OPUS4-49224 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -