TY - CONF A1 - Simon, Fabian A1 - Gehrenkemper, Lennart A1 - Meermann, Björn T1 - An improved method for the determination of PFAS using HR-CS-GFMAS via GaF detection N2 - Per- and polyfluorinated alkyl substances (PFASs) are a group of over 4730 individual compounds. Several PFASs are extremely persistent, bioaccumulative and toxic. The analysis of PFASs is challenging because of their various chemical and physical properties as well as the high number of compounds. Target-based approaches (e.g., LC-MS/MS) are limited to the availability of analytical grade standards and are not suitable for the analysis of new/unknown PFASs and transformation products. Therefore, PFAS sum parameter methods become increasingly important to indicate realistic PFAS pollution levels. PFAS sum parameters display the proportion of organically bound fluorine that can either be extracted (EOF) or adsorbed to activated carbon (AOF). For the instrumental analysis of such sum parameters, a fluorine selective detector is needed. High resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) is a sensitive and highly selective tool for fluorine determination. The method is based on the in situ formation of diatomic gallium-mono fluoride (GaF) in a graphite furnace at a temperature of 1550°C. The molecular absorption of GaF can be detected at its most sensitive wavelength at 211.248 nm providing limits of quantification of c(F) 2.7 µg/L. Here, we present an improved method for the determination of PFASs using HR-CS-GFMAS via GaF detection. The optimized method includes a Ga pretreatment as described by Gawor et al. resulting in overall lower detection limits. Furthermore, during optimization the influence of species-specific responses during HR-CS-GFMAS analysis was reduced resulting in a more accurate determination of PFAS sum parameters. To test the applicability of the improved method, we analyzed soil samples from a former fire-fighting training area combining the improved method for detection with our previously optimized extraction method for EOF determination in soils. T2 - SALSA - Communicating Make and Measure 2022 CY - Berlin, Germany DA - 15.09.2022 KW - PFAS KW - HR-CS-GFMAS KW - Fluorine PY - 2022 AN - OPUS4-55783 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -