TY - CONF A1 - Rurack, Knut T1 - Molecularly Imprinted Polymers with Integrated Fluorescence as Versatile Biomimetic Sensing Matrices N2 - Molecularly imprinted polymers (MIPs) are an established, versatile and high-performance matrix for the selective separation or enrichment of (bio)chemical species, especially small molecules of biochemical or environmental relevance. MIPs are prepared through the polymerization of a mixture of functional monomers and cross-linkers in the presence of the template with subsequent extraction of the latter. Conceptionally, this process can be seen as mimicking in a strongly accelerated, though single-step manner a biological process such as antibody formation. Because the resulting MIPs contain cavities in their matrix that are complementary in size, shape and electronic/ electrostatic or hydrogen bonding demand to the imprinted target molecule or template, these polymers are frequently termed “artificial antibodies”. Compared to natural antibodies, they are chemically and physically much more robust. Regarding sensitivity and selectivity, however, there is still a gap to bridge before MIPs can fully compete with antibodies. Another favorable aspect that distinguishes MIPs from antibodies is that they can be endowed with an explicit function, allowing the use of MIPs in applications that require more than only an efficient binder. For instance, if specifically designed and polymerizable fluorescent indicators are integrated as functional monomers into a MIP, direct fluorescence sensing can be accomplished. Because MIPs can be prepared in a variety of different formats, their combination with miniaturized or other specific analytical techniques or sensory devices is possible, especially when the transduction mode is light. This presentation will introduce basic design considerations, challenges, limitations and the potential that lies with such sensor materials with some recent examples of our group, targeting various organic oxoanions as analytes. T2 - 8th International Symposium on Bioanalysis, Biomedical Engineering and Nanotechnology CY - Changsha, Hunan, China DA - 25.05.2018 KW - Molecularly imprinted polymers KW - Fluorescence KW - Anion recognition PY - 2018 AN - OPUS4-45641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -