TY - CONF A1 - Emmerling, Franziska T1 - Mechanistic investigations of mechanosyntheses N2 - Mechanochemistry is a fast and efficient method applicable for the synthesis of new organic, metal-organic, and inorganic compounds. The direct monitoring of milling reactions is still challenging. The underlying reaction mechanisms often remain unclear. In the last years, we have established a tandem in situ approach for investigating mechanochemical reactions using time-resolved in situ XRD coupled with Raman spectroscopy. A further development is the in situ coupling of synchrotron XRD, Raman spectroscopy, and thermography allowing the observation of mechanochemical reactions in real time. [5] Information on the crystalline, molecular, and temperature state of the materials during grinding could be collected. The chemical composition of the reaction mixture was found to be directly correlated with changes in the temperature profile of the reaction. Furthermore, the presented setup allows the detection of crystalline, amorphous, eutectic as well as liquid intermediates. Based on these data, metastable polymorphs of cocrystals and coordination polymorphs could be isolated and struc-turally characterized. A multi-step diffusion mechanism was identified for most systems. Crystalline phases were obtained intermediately, suggesting that the synthesis is following Ostwald’s rules of stages. The resulting deeper kinetic and thermodynamic understanding of milling processes is the key for future optimization of mechanochemical syntheses. T2 - Beilstein Symposium MECHANOCHEMISTRY: MICROSCOPIC AND MACROSCOPIC ASPECTS CY - Rüdesheim, Germany DA - 13.11.2018 KW - Mechanochemistry KW - Phosphonates KW - In situ PY - 2018 AN - OPUS4-46758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -