TY - JOUR A1 - Accorsi, M. A1 - Tiemann, M. A1 - Wehrhan, L. A1 - Finn, Lauren M. A1 - Cruz, R. A1 - Rautenberg, Max A1 - Emmerling, Franziska A1 - Heberle, J. A1 - Keller, B. G. A1 - Rademann, J. T1 - Pentafluorophosphato-Phenylalanines: Amphiphilic Phosphotyrosine Mimetics Displaying Fluorine-Specific Protein Interactions JF - Angewandte Chemie International Edition N2 - Phosphotyrosine residues are essential functional switches in health and disease. Thus, phosphotyrosine biomimetics are crucial for the development of chemical tools and drug molecules. We report here the discovery and investigation of pentafluorophosphato amino acids as novel phosphotyrosine biomimetics. A mild acidic pentafluorination protocol was developed and two PF5-amino acids were prepared and employed in peptide synthesis. Their structures, reactivities, and fluorine-specific interactions were studied by NMR and IR spectroscopy, X-ray diffraction, and in bioactivity assays. The mono-anionic PF5 motif displayed an amphiphilic character binding to hydrophobic surfaces, to water molecules, and to protein-binding sites, exploiting charge and H−F-bonding interactions. The novel motifs bind 25- to 30-fold stronger to the phosphotyrosine binding site of the protein tyrosine phosphatase PTP1B than the best current biomimetics, as rationalized by computational methods, including molecular dynamics simulations. KW - Chemical Biology KW - Drug Development KW - Pentafluorophosphates KW - Phosphotyrosine Biomimetics KW - Protein Tyrosine Phosphatases PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549984 DO - https://doi.org/10.1002/anie.202203579 SN - 1433-7851 VL - 134 IS - 25 SP - 1 EP - 6 PB - Wiley-VCH GmbH AN - OPUS4-54998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -