TY - JOUR A1 - Gornushkin, Igor B. A1 - Völker, Tobias A1 - Kazakov, Alexander Ya. T1 - Extension and investigation by numerical simulations of algorithm for calibration-free laser induced breakdown spectroscopy JF - Spectrochimica Acta Part B N2 - Accuracy of calibration-free (CF) methods in laser-induced breakdown spectroscopy (LIBS) depends on experimental conditions and instrumental parameters that must match a CF LIBS model. Here, the numerical study is performed to investigate effects of various factors, such as the optical density, plasma uniformity, line overlap, noise, spectral resolution, electron density and path length on the results of CF-LIBS analyses. The effects are examined one-by-one using synthetic spectra of steel slag samples that fully comply with the mathematical model of the method. Also, the algorithm includes several new features in comparison with previously proposed CF algorithms. In particular, it removes limits on the optical thickness of spectral lines that are used for the construction of the Saha-Boltzmann plot; it retrieves the absorption path length (Plasma diameter) directly from spectral lines; it uses the more realistic Voigt line profile function instead of the Lorentzian function; and it employs the pre-calculated and tabulated thin-to-thick line ratios instead of approximating functions for selfabsorption correction. KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Plasma diagnostics KW - Calibration free LIBS PY - 2018 DO - https://doi.org/10.1016/j.sab.2018.06.011 SN - 0584-8547 VL - 147 SP - 149 EP - 163 PB - Elsevier B.V. AN - OPUS4-45340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -