TY - CONF A1 - Kotschate, Daniel A1 - Hansen, L. A1 - Gaal, Mate A1 - Kersten, H. T1 - Acoustical analysis of DCSBD and MHC discharges N2 - Due to the multi-physical appearance of gas discharges the possibilities of interaction with their surrounding environment are very wide. Some of the most common applications are the surface or material modification and acting as an ion source for mass spectroscopy applications. Since atmosphere plasma generates a massive amount of thermal energy caused by collisions in the sheath, this temperature alternation is also able to produce acoustic waves in the ambient gas volume (as lightning and thunder), which is called thermoacoustic effect. This talk presents an overview of the experimental acoustic analysis of surface dielectric barrier and micro hollow cathode discharges. Regarding other methods of acoustic excitation, the thermoacoustic approach benefits of its massless working principle and the proper impedance matching. In addition to the characterisation, possible applications (e.g. plasma acoustic loudspeaker or transducer for air-coupled ultrasonic testing) concerning these discharge types are presented. T2 - DPG Frühjahrstagung (SAMOP) CY - Erlangen, Germany DA - 04.03.2018 KW - Gas discharges KW - Micro hollow cathode discharge KW - Surface dielectric barrier discharge KW - Atmospheric pressure plasma PY - 2018 AN - OPUS4-44443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -