TY - CONF A1 - Kjaervik, Marit A1 - Dietrich, P. A1 - Thissen, A. A1 - Petrik, S. A1 - Unger, Wolfgang T1 - Surface characterisation of bacteria and biofilms by NAP-XPS N2 - INTRODUCTION: X-ray photoelectron spectroscopy (XPS) provides elemental and chemical information from the outermost ~10 nm of the sample surface. This is in the same order of magnitude as the thickness of the outer bacterial membrane of gram-negative bacteria, as well as outer membrane molecules as exopolysaccharides and lipopolysaccharides, commonly attached to the cell surface. With the development of near-ambient pressure (NAP)-XPS, bacteria can be analysed with minimal sample preparation. This is in contrast to ultra-high vacuum XPS, where complex sample preparation including freeze-drying or fast-freezing is required, a treatment that may introduce artefacts or degrade the biological constituents. METHODS: EnviroESCA is a laboratory based NAP-XPS instrument, equipped with a monochromated Al Kα radiation source and a differentially pumped energy analyser connected to an exchangeable sample environment, a basic build-up is displayed in Figure 1c. It allows for measurements in various gas-atmospheres, including water vapor, which makes it possible to characterise bacteria and other biological samples close to their natural, hydrated state. Artificial model-biofilms of exopolysaccharides, planktonic Pseudomonas Fluorescens and biofilms of Escherichia Coli have been characterised in hydrated and dried state. RESULTS: High-resolution XPS-spectra from carbon, oxygen, nitrogen and phosphorous can be assigned to carbohydrates, lipids and proteins in general agreement with litterature2,3. Especially the carbon 1s peak is of interest (see Figure 1a and b), which reveal components originating from aliphatic carbon, single bounded carbon and double bounded/acetal carbon. A series of measurements of an E. coli biofilm from 11 mbar in humid environment to 1 mbar air reveal changes in the C1s peak, which suggests that the bacterial surface undergo substantial change. DISCUSSION & CONCLUSIONS: Bacterial samples can be analysed under near-ambient pressure conditions in various states of hydration with minimal sample preparation. Such investigations of bacterial cell wall surfaces are essential for studying biological interfaces at work. T2 - Biointerfaces International Conference CY - Zurich, Switzerland DA - 14.08.2018 KW - Bacteria KW - E. coli KW - NAP-XPS KW - Biofilms KW - Alginate PY - 2018 AN - OPUS4-45717 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -